The original review of DuraSystems Barriers Inc., is on https://www.rip off report.com/reports/durasystems-barriers-inc/vaughan-ontario-l4k-4t2/durasystems-barriers-inc-dsbi-durabarrier-high-voltage-transformer-fire-barrier-is-a-sca-1465535. This website has a function, where the owners of the business on whom a review has been filed, are able to offer a rebuttal. The report and its update are from the fall of 2018. Check today's date. The report is very specific and detailed, and includes graphics as well as a report from UL of Canada, which all run counter to the claims by the vendor on http://www.durasystems.com/ and http://www.sinisisolutions.com/ and https://www.albarrie.com/secondary-containment/custom-products/durabarrier-firewalls/ . If there were a reasonable response, why would there be no rebuttal?
Do you pay for your electricity directly or through your rent? This (“DuraBarrier” a wittingly misrepresented, Canadian/British critical infrastructure protection product, used to stop burning/exploding high-voltage transformers from taking down neighbouring transformers, which can cause a domino effect and affect the surrounding grid by causing a brown-out or cascading failure. “DuraBarrier”, an inoperable high-voltage transformer fire barrier, is made by DuraSystems Barriers Inc. – DSBI, of Vaughan, Ontario, Canada, durasystems.com, imported into the US through a cut-out: sinisisolutions.com) may have ripped you off indirectly, and many North American utilities directly, who passed the cost of the DuraBarrier scam (fraud financial damages, not considering a fire or ballistic event failure, include the costs for substation shut-down, invoice from DSBI, invoice from sinisisolutions.
com, invoice from a local installer plus an invoice from a locally licensed engineer - for local seismic and wind load vetting) on to everyone who buys electricity from the scammed utility, of which there are many, both in the US and Canada, plus it has weakened the electric grid (wittingly imperilling Critical National Infrastructure) by causing utilities to rely on a product based on rigged and failed testing, mentioned in DSBI’s test index 34, Page 6, Table 1.2.2 – 16 bogus tests that would have a fire test engineer rolling on the floor laughing. If DuraBarrier is allowed, why bother to stop foreign hackers from taking down the electric grid? This post describes the test fallacies, concealed from utilities by blatantly false advertising.
Critical Infrastructure Protection for the electric grid is a matter of national security – but it is also a pocketbook issue for hydro ratepayers. “DuraBarrier” has been installed in many North American substations, probably since at least 2006, the date of the bogus A40 test in table 1.2.2 of DSBI’s test index 34. The topic, in general, not DuraBarrier or any of its rival products in particular, is described here:
The problem is that outdoor substations with large electrical transformers are not buildings. Therefore, no building code or fire code applies, which means there is no Authority Having Jurisdiction (AHJ). No AHJ would allow “DuraBarrier” in a building because it fails to meet the conditions of acceptance of fire test standard ASTM E119 (.astm.org/Standards/E119.htm), which is a precondition to meeting NFPA 850 (nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=850) Recommended Practice for transformer fire walls in substations. If it did meet the recommendations in NFPA 850, which it does not, it could also be used in a building. There is no functional 2-hour, let alone 6-hour fire barrier at 3/8” or 9.5mm thickness. Humankind does not currently possess such technology. DuraBarrier is a single, naked sheet of British-made Durasteel, at 3/8” or 9.5mm thick, fastened to a steel frame. The 16 test reports in Table 1.2.2 of DSBI test index 34, used to misrepresent DuraBarrier are all either rigged or failed in one way or another. DuraBarrier is ineligible for UL certification listings because it does not conform to the ASTM E119 conditions of acceptance. Durasteel, made by Promat UK in England, and formerly by Cape Durasteel Ltd., the only proprietary component in DuraBarrier (fabricated in Canada by DSBI), is UL listed and works for use in other applications, but not “DuraBarrier. The only way utilities are bamboozled into buying into this scam is because the decision makers have electrical backgrounds – not fire-resistance knowledge, which is an architectural discipline, which is not consulted in matters concerning outdoor electrical substations.
Sinisisolutions.com, the US cut-out, without evidence, goes further in its claims than DSBI, including stating that the product is made in USA, and capable of Jetfire testing, which is a very severe, large flamethrower test, that DuraBarrier has not been tested to.
This is a multi-million-dollar scam that has been running for years and appears to still be up and running.
This post describes fallacies inside of 16 test reports cited by DSBI in its test index 34, table 1.2.2., starting with the worst one: A40.
DSBI claims that it has 6 hours fire resistance (which sounds impressive without knowing the facts), tested to the ASTM E119 time/temperature curve. This is a deception. “Fire resistance”, in North America, for a non-loadbearing wall, means that it meets the conditions of acceptance of ASTM E119, which is identical to NFPA 251, CAN/ULC-S101 and UL 263. These 4 test standards are virtually the same and represent the state of the art in North America. DuraBarrier does not meet those conditions, not even close. But, contrary to Canada’s Competition Act, Section VII.1, Deceptive Marketing Practices (laws-lois.justice.gc.ca/PDF/C-34.pdf) and 15 U.S. Code Paragraph 45 (law.cornell.edu/uscode/text/15/45), DSBI, together with sinisisolutions.com makes a series of false claims, proven false by the actual test report. See some of the claims at a recent trade show right here: commons.wikimedia.org/wiki/Category:DuraBarrier_Exhibition_at_NFPA_Las_Vegas_Trade_Show,_June_2018. The egregiously deceptive 6-hour fire resistance claim is based on its “A40” test, mentioned in its test index 34, but also going back to earlier versions, such as test index 29, table 1.2.2. The test laboratory is the “Blackburn Fire Test Centre” (BFTC), falsely portrayed, with the assistance of Promat UK (owners of BFTC), as an independent test laboratory. BFTC, recently sold off to Exova, a proper fire test company, was an in-house lab, owned and operated by, and out of premises owned by Promat UK, with the same address, phone and fax number, in England. DuraBarrier is nothing other than an asymmetrical wall (which actually means it must be tested from both sides – it wasn’t), which is shown on the Wikimedia Commons Category “Asymmetrical fire barriers” (commons.wikimedia.org/wiki/Category:Asymmetrical_fire_barriers), made of a steel framework, without any fireproofing to keep the steel temperature from exceeding 1000 degrees Fahrenheit or 538 degrees Celsius heat rise above ambient at the beginning of the test (a requirement for structural steel in North American fire test standards), and then Durasteel panelling, (commons.wikimedia.org/wiki/Category:Durasteel), 3/8 inch or 9.5mm thick, made of low density and wood fibre re-enforced concrete, sandwiched in with perforated galvanised sheet metal – screwed into the steel frame with sheet metal screws. Identically to the Thermo-Lag Scandal (en.wikipedia.org/wiki/Gerald_W._Brown#Thermo-Lag_scandal), the manufacturer’s (Promat UK’s BFTC in-house lab) laboratory was used to qualify the product. As you can imagine, when the manufacturer tests his own products, it is possible that he gets great results. Also see nrc.gov/reading-rm/doc-collections/gen-comm/gen-letters/1992/gl92008.html. But it does not stop there. The test sample size was 8.9 square metres or 96 square feet – below the minimum required size, meaning the test was irrelevant on that basis alone. The reason for this smaller size is because the restraint frame that holds the test sample was narrowed in by what looks like pieces of precast concrete, thus resulting in the sample size below BOTH British AND North American Requirements. A40’s 8.9 square metre wall test sample size is solidly below the minimum size dictated by all 4 North American test standards (ASTM E119, CAN/ULC-S101, NFPA 251 and UL 263), as well as the British Standard BS476, from which most of the acceptance criteria was copied and pasted verbatim, whilst mentioning only ASTM E119. BS476 requires a minimum test sample size of 9 square metres, meaning the A40 test complies neither with ASTM E119 nor BS476. Each of the four North American standards require a minimum sample size of 100 square feet or 9.3 square metres. The A40 test falls short of this (meaning the whole test is bogus because of the sample size alone), but conceals the fact by not counting up the sample module sizes, which is also a requirement of the standards in terms of items required to be covered by test reports. The A40 test was done on one side only (despite the requirement in all North American test standards AND BS 476 to test both sides of asymmetrical wall test samples) because DSBI and BFTC (AKA Promat UK) claim that with the steel framework in the fire, they tested the most critical side, which is good enough – for them. That is a purposeful deception aided and abetted by Promat UK, who know better. The standards indicate that one must test two identical samples, one from each side. The results from both tests must be reported, which means, in practice, that whichever side gets the lowest fire resistance test result, that is the overall rating of the wall system. Test sponsor and manufacturer-owned test labs, do not get to pick which side is more dangerous and then save money (typically about US$20,000 per full size wall test in North American laboratories) by testing only one side whilst claiming to be in compliance with standards that say the opposite. By comparison, all drywall shaftwalls are asymmetrical and get tested on both sides. In practical use, one cannot know with certainty, which side the fire will come from. That is why the caution. It gets worse. DuraBarrier, meaning single sheets of Durasteel, fastened onto a steel frame that gets red-hot during a fire, meaning significantly lower strength than at ambient, are supposed to be suspended from concrete filled rectangular steel tubes, or HSS (Hollow Steel Section) columns. Such steel columns can work in fires, but they also exhibit fire behaviour whose effect upon DuraBarrier was never tested, and these columns are an integral part of the DuraBarrier wall system. Not including the full system that gets installed in the field contravenes paragraph 5 of ASTM E119, which states that test samples must match the field-installed configurations. So, the supports for DuraBarrier, that carry its load, were not tested together with DuraBarrier, contrary to paragraph 5 of ASTM E119. The steel frame of DuraBarrier gets red-hot in a fire. Authors of the A40 test report, including one J. Adams, same name as a Promat UK employee, listed as an application support manager, cherry-picks its own conditions of acceptance, taking the time/temperature curve to run the furnace with and the rest of the acceptance criteria verbatim from BS 476, a British standard, which has no validity whatsoever in North America, which is not mentioned in NFPA 850 either – a fact clearly known to DSBI, who claim expert status for themselves in matters of fire protection. One cannot comply with NFPA 850 recommendations by using a foreign fire test standard that it does not mention. Also, all single sheet Durasteel wall tests fail the temperature transmission requirements within approximately one quarter of an hour, from 10 to 21 minutes, in all furnace fire tests mentioned in table 1.2.2 in DSBI’s test index.
It gets worse yet.
The furnace is supposed to be calibrated and instrumented with furnace-interior thermocouples shielded inside of Inconel tubes. That’s called “shielded thermocouples”. Europeans use “fast response thermocouples”, with bare copper plates. The A40 test shows zero evidence that shielded thermocouples were used during the A40 test. Why does this matter? Because it can take 20 minutes or so for the thermocouples inside the Inconel tubes to accurately measure the furnace temperature, meaning that North American furnaces run hotter than European ones or anybody’s furnace run by means of fast response thermocouples early in the test, thus delivering a greater thermal shock at the beginning of the test. This fact was highlighted and quantified by the government of Canada: nparc.nrc-cnrc.gc.ca/eng/view/accepted/?id=f74c3459-d0dc-4349-a6d3-bdc1e80ae5f5. That means a slower, gentler thermal shock for test samples in furnaces equipped with fast response thermocouples – sort of like taking a grade 8 junior high school test in the third year of university – a wee bit easier. In the very similar Thermo-Lag Scandal, the United States Government had the manufacturer’s test furnace, which was used to qualify that same manufacturer’s product (Thermo-lag 330-1) disassembled and then re-assembled in Elmendorf, Texas, at Omega Point Laboratories (now Intertek), who conducted studies on behalf of the USNRC concerning fraudulently misrepresented electrical fireproofing (used to keep cables between control room and reactor inside of a nuclear power plant operational, in order to enable safe shutdown in the event of an emergency, involving an accidental fire). It’s a good idea to be able to switch off the reactor in a fire, same as it’s a good idea to keep burning and exploding transformers from having a domino effect… The studies provided with taxpayer funding by Omega Point Laboratories, now held at the Library of Congress, indicated that the Thermo-lag 330-1 fireproofing worked as intended when the furnace was equipped with fast response thermocouples – the furnace instrumentation was actually the “cheat” by Thermal Science Inc., the manufacturer of Thermo-lag 330-1. As soon as the same configuration of Thermo-lag fireproofed wiring was tested in a furnace equipped with shielded thermocouples, which is the requirement, it failed well before the claimed fire resistance rating period. This lacking performance was found out by nuclear whistle blower Gerald W. Brown (en.wikipedia.org/wiki/Gerald_W._Brown), who, at the time, was a principal in the Chemtrol company, which was a maker and installer of silicone foam through-penetration firestops (en.wikipedia.org/wiki/Firestop) in American nuclear power stations licensed by the USNRC. Gerald W. Brown had test reports to cover cable tray through-penetrations, firestopped with silicone foam, behind ceramic fibre form boards. What he lacked at the time, was evidence that when the wiring was fireproofed with Thermo-lag 330-1, there were no issues with his firestops and the direct contact between his firestop foam and the cable fireproofing. The fire test failed, at the location of the Thermo-lag 330-1 fireproofing, long before the expected time, causing Gerald W. Brown to report the matter to the USNRC, which set off a series of government run tests (funded by taxpayer funds), as well as litigation, followed by remedial action by USNRC license holders to protect their safe-shutdown trains (which ratepayers funded). So, the same test inconsistency that led to massive costs and litigation previously, which is public domain knowledge since the nineties, may have been in play in DSBI’s A40 test, as it offers no evidence whatsoever that the furnace was instrumented with shielded thermocouples, which is a North American requirement, without which, it is deceptive to use the defined term “fire resistance”, a fact well known to DSBI who claim expert status in the field. Also, the A40 test includes no hose stream, which is a water cannon test, at 3.1 bar or 45 PSI for several minutes, within 10 minutes of the end of the fire endurance test. Water must not project through the test sample to the unexposed side. The A40 test omitted this – one of many fallacies, that make it false advertising to use the defined term “fire resistance” in connection with DuraBarrier. Also, Promat UK’s conspiracy to commit fraud is apparent here. BFTC is not identified as being an in-house lab (with a stake in a positive outcome) in the test report. In fact, there is no mention of the conflict of interest in using a manufacturer’s in-house test as a means of demonstrating fitness for purpose – in the Colonies. Promat UK, indicatively, makes no mention of this A40 test in its own promotional literature – despite the otherwise impressive sounding (false advertising) 6 hours of fire-resistance, at a thickness of only 3/8” or 9.5mm. Also, BFTC, the Promat UK in-house test lab, did maintain UKAS accreditation. Again, indicatively, the A40 report states that this was an ad hoc test and, as such, outside of its accreditation scheme. Therefore, the accreditation is mentioned in order to highlight the quality of the in-house laboratory, but this test is not covered. It is entirely possible that this enabled Promat UK to conceal the A40 report from routine BFTC audit by UKAS, which may have resulted in notification to the Competition and Markets Authority (en.wikipedia.org/wiki/Competition_and_Markets_Authority) in London, once the effect of exporting under unfair auspices were understood. It is also not clear, whether the BFTC lab was accredited by UKAS to run ASTM E119 tests, which would have entailed checking for the use of shielded thermocouples, without which, the test has no validity for North America and represents an unfair trade practice whilst trading in or with North America. In the Thermo-Lag scandal, USNRC noted that when Thermal Science Inc (TSI) represented the ITL laboratory, which had done qualifying tests on Thermo-Lag electrical fireproofing, as an independent test laboratory, that this was a Severity 1 violation, which, in itself, was worth a civil fine of $100,000.00. BFTC was owned and operated by Promat UK, makers of Durasteel and providers of Durasteel to DSBI.
Test A1 through A21, in table 1.2.2 of DSBI test index 29-34, page 6, are all British BS476 fire tests with fast response furnace thermocouples, with the test sample Durasteel walls less than the North American minimum wall sample size of 100 square feet or 9.3 square metres. All failed the thermal transmission mandatory ASTM E119 requirement within 10-21 minutes. No hose stream was run. The earliest of these tests was in 1976, thus proving conclusively that DSBI, which began operations in 1990, knew, since its very inception, that a single sheet, uninsulated Durasteel wall does not meet minimum North American requirements. Also, any claim DSBI may represent to having, concerning proprietary intellectual property or copyright is disabled on account of the fact that the earliest tests of single sheet Durasteel walls resemble DuraBarrier. Using somewhat different steel profile configurations to make the frames to screw the Durasteel panels into, is no great scientific leap. Further, similar systems are also promoted by rival Invicta, another Promat UK distributor, who, just like DSBI, posts pictures of such single sheet barriers, fashioned into modules containing tube steel, have been in the public domain for some time. Also, sinisisolutions.com put the construction details of DuraBarrier online through photographs. DSBI has exhibited samples of DuraBarrier publicly at trade shows. DuraBarrier ceased being unique intellectual property in 1976, when the first test was run by Cape Durasteel Limited, whose test reports were disseminated worldwide through distribution networks and sales staff. As a result, there can be no serious claim by DSBI of having unique technology, intellectual property or scientific research and experimental development under the Income Tax Act of Canada. The A40 test is particularly deceptive in its use, with Promat UK as a co-conspirator in product misrepresentation, or unfair trade practice, through authoring the A40 test report, which does not explain the fiduciary ties between BFTC, Promat UK and DSBI in the test report, and cherry-picks its own pass-fail criteria, which is normally not necessary, as the standards have spelled out the conditions of acceptance, since it is used to claim 6 hours of fire resistance. 6 hours fire resistance would be impressive, if the product met the conditions of acceptance of ASTM E119, NFPA 251, CAN/ULC-S101 and/or UL263, which are all essentially identical. As a species, homo sapien does not currently possess the knowledge to meet the necessary conditions of acceptance at a thickness of 3/8” or 9.5mm. To believe otherwise, requires a solid lack of knowledge in the field of fire-resistance, where wall thicknesses of several inches are needed to provide sufficient strength and insulation to meet such conditions of acceptance. For example, DSBI’s V466 2-hour UL listed system is over 4 inches or 10 cm thick. DSBI’s V460 UL listed 4-hour wall is 6-3/4” or 17.1 cm thick – for 4 hours, but DuraBarrier, ineligible for UL listings, is only 3/8” or 9.5mm thick and is marketed for 6 hours of fire resistance. 4-1/2” for 2 hours, 6-3/4” for 4 hours, but only 3/8” for 6 hours?
So, looking at Table 1.2.2 in test index 34, in tests A1 through A40, not a single hose stream test had been run, or run successfully, meaning any and all claims of fire resistance within North America, are completely deceptive. Then we get to test A41, which DSBI uses here, again, deceptively, to “Frankenstein” a hose-stream test onto the other non-compliant fire tests. Again, this is a purposeful deception and clear violation of Canada’s Competition Act and 15 US Code Paragraph 45. It is false advertising. In the first place, you cannot cherry-pick things you like from different tests and then cobble a rating together. It does not work that way. Secondly, Test report A41, signed by (now retired) Underwriters Laboratories of Canada engineers Claude Travers and Abbas Gulam Nanji, was not only a failure, and thus ineligible for listings, but it also violated test protocols in multiple ways, and, UL Canada clearly indicates the fallacies right inside of the report and indicates that DSBI are not to mention UL or that test in connection “with this wall system” (DuraBarrier). Table 1.2.2 calls it a “DuraBarrier Hose Stream Test”, AND mentions UL of Canada, contrary to UL’s explicit instructions, and thus expects people to use its result, to graft the hose stream test resistance onto other tests, where no hose stream test was performed. A41 and A42 were part of a series of tests following a DuraBarrier installation rumoured to be located at USNRC licensee TVA Watts Bar nuclear power station, which, supposedly, enquired about a missing hose stream test up until that point, prior to the 2008 and 2009 UL Canada test series. The UL Canada test series culminates in a single page letter report by UL Canada, dated 29. April 2009, by Claude Travers and Abbas Nanji to DSBI’s former staffer, Mr. John Wu. The letter informs DSBI’s Mr. Wu, that a 3-hour fire resistance test had been performed on 30 October 2008, as part of project 08CA37087. Following a 3-hour fire test, DuraBarrier failed the hose stream test. As soon as you see this, you need to realise that DSBI’s claim of 6 hours of fire resistance, which must include hose stream resistance, is false advertising and NFPA 850 compliance is out the window. Standards permit a re-test of an identical test sample, and only exposing this sample to a 1-hour fire endurance test, followed by the hose stream test, using the water cannon. If, beginning within 10 minutes of the end of the fire, it passes the hose stream test without through-projection of water to the unexposed side, then the sample is compliant from a hose stream perspective – if there are no other test standard violations, of which there are several, as Claude Travers and Abbas Nanji pointed out under separate cover. One small problem: the report indicates that following the 1-hour fire endurance test of DuraBarrier on 08. April 2009, DuraBarrier FAILED the mandatory hose stream test, without which there can be no claims of fire resistance in North America or per NFPA 850 for transformer fire walls. Indicatively, this particular single UL Canada page report does NOT show up in Table 1.2.2 of DSBI test index 34. DSBI may claim violation of proprietary information, but, in fact, it proves its culpability in false advertising, and thus, the defrauding of DuraBarrier customers and ratepayers, whose financial damages of this fraud go beyond the invoiced amount DSBI received per sale of DuraBarrier (station shut-down, installation, sinisisolutions.com as a middle man, or the previous cut-out – CSSI, plus local vetting for seismic and wind by a locally licensed structural engineer). This is where we get back to test A41, which is completely rigged. Here are the fallacies in the A41 test, as reported by UL of Canada: The test sample size was too small, at 9.09 square metres or 97.85 square feet, well below the minimum of 9.3 square metres or 100 square feet. Right there, the whole test is irrelevant, on size alone – again. But it does not stop there. Thermal failure occurred within only 17 minutes of the start of the test. After that point in time, there is no point in continuing, especially whilst claiming compliance with NFPA 850, which recommends that test samples comply with all conditions of acceptance of ASTM E119 or UL 263, which are both identical with CAN/ULC-S101 and NFPA 251.
DuraSystems Barriers, Inc. Reviews
Not motivated to respond?
The original review of DuraSystems Barriers Inc., is on https://www.rip off report.com/reports/durasystems-barriers-inc/vaughan-ontario-l4k-4t2/durasystems-barriers-inc-dsbi-durabarrier-high-voltage-transformer-fire-barrier-is-a-sca-1465535. This website has a function, where the owners of the business on whom a review has been filed, are able to offer a rebuttal. The report and its update are from the fall of 2018. Check today's date. The report is very specific and detailed, and includes graphics as well as a report from UL of Canada, which all run counter to the claims by the vendor on http://www.durasystems.com/ and http://www.sinisisolutions.com/ and https://www.albarrie.com/secondary-containment/custom-products/durabarrier-firewalls/ . If there were a reasonable response, why would there be no rebuttal?
What about a specific reply by this vendor?
Would be nice to see a specific reply by this vendor. The indication is not good concerning their claims about Durabarrier.
Do you pay for your electricity directly or through your rent? This (“DuraBarrier” a wittingly misrepresented, Canadian/British critical infrastructure protection product, used to stop burning/exploding high-voltage transformers from taking down neighbouring transformers, which can cause a domino effect and affect the surrounding grid by causing a brown-out or cascading failure. “DuraBarrier”, an inoperable high-voltage transformer fire barrier, is made by DuraSystems Barriers Inc. – DSBI, of Vaughan, Ontario, Canada, durasystems.com, imported into the US through a cut-out: sinisisolutions.com) may have ripped you off indirectly, and many North American utilities directly, who passed the cost of the DuraBarrier scam (fraud financial damages, not considering a fire or ballistic event failure, include the costs for substation shut-down, invoice from DSBI, invoice from sinisisolutions.
com, invoice from a local installer plus an invoice from a locally licensed engineer - for local seismic and wind load vetting) on to everyone who buys electricity from the scammed utility, of which there are many, both in the US and Canada, plus it has weakened the electric grid (wittingly imperilling Critical National Infrastructure) by causing utilities to rely on a product based on rigged and failed testing, mentioned in DSBI’s test index 34, Page 6, Table 1.2.2 – 16 bogus tests that would have a fire test engineer rolling on the floor laughing. If DuraBarrier is allowed, why bother to stop foreign hackers from taking down the electric grid? This post describes the test fallacies, concealed from utilities by blatantly false advertising.
Critical Infrastructure Protection for the electric grid is a matter of national security – but it is also a pocketbook issue for hydro ratepayers. “DuraBarrier” has been installed in many North American substations, probably since at least 2006, the date of the bogus A40 test in table 1.2.2 of DSBI’s test index 34. The topic, in general, not DuraBarrier or any of its rival products in particular, is described here:
en.wikipedia.org/wiki/High-voltage_transformer_fire_barriers
The problem is that outdoor substations with large electrical transformers are not buildings. Therefore, no building code or fire code applies, which means there is no Authority Having Jurisdiction (AHJ). No AHJ would allow “DuraBarrier” in a building because it fails to meet the conditions of acceptance of fire test standard ASTM E119 (.astm.org/Standards/E119.htm), which is a precondition to meeting NFPA 850 (nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=850) Recommended Practice for transformer fire walls in substations. If it did meet the recommendations in NFPA 850, which it does not, it could also be used in a building. There is no functional 2-hour, let alone 6-hour fire barrier at 3/8” or 9.5mm thickness. Humankind does not currently possess such technology. DuraBarrier is a single, naked sheet of British-made Durasteel, at 3/8” or 9.5mm thick, fastened to a steel frame. The 16 test reports in Table 1.2.2 of DSBI test index 34, used to misrepresent DuraBarrier are all either rigged or failed in one way or another. DuraBarrier is ineligible for UL certification listings because it does not conform to the ASTM E119 conditions of acceptance. Durasteel, made by Promat UK in England, and formerly by Cape Durasteel Ltd., the only proprietary component in DuraBarrier (fabricated in Canada by DSBI), is UL listed and works for use in other applications, but not “DuraBarrier. The only way utilities are bamboozled into buying into this scam is because the decision makers have electrical backgrounds – not fire-resistance knowledge, which is an architectural discipline, which is not consulted in matters concerning outdoor electrical substations.
Sinisisolutions.com, the US cut-out, without evidence, goes further in its claims than DSBI, including stating that the product is made in USA, and capable of Jetfire testing, which is a very severe, large flamethrower test, that DuraBarrier has not been tested to.
This is a multi-million-dollar scam that has been running for years and appears to still be up and running.
This post describes fallacies inside of 16 test reports cited by DSBI in its test index 34, table 1.2.2., starting with the worst one: A40.
DSBI claims that it has 6 hours fire resistance (which sounds impressive without knowing the facts), tested to the ASTM E119 time/temperature curve. This is a deception. “Fire resistance”, in North America, for a non-loadbearing wall, means that it meets the conditions of acceptance of ASTM E119, which is identical to NFPA 251, CAN/ULC-S101 and UL 263. These 4 test standards are virtually the same and represent the state of the art in North America. DuraBarrier does not meet those conditions, not even close. But, contrary to Canada’s Competition Act, Section VII.1, Deceptive Marketing Practices (laws-lois.justice.gc.ca/PDF/C-34.pdf) and 15 U.S. Code Paragraph 45 (law.cornell.edu/uscode/text/15/45), DSBI, together with sinisisolutions.com makes a series of false claims, proven false by the actual test report. See some of the claims at a recent trade show right here: commons.wikimedia.org/wiki/Category:DuraBarrier_Exhibition_at_NFPA_Las_Vegas_Trade_Show,_June_2018. The egregiously deceptive 6-hour fire resistance claim is based on its “A40” test, mentioned in its test index 34, but also going back to earlier versions, such as test index 29, table 1.2.2. The test laboratory is the “Blackburn Fire Test Centre” (BFTC), falsely portrayed, with the assistance of Promat UK (owners of BFTC), as an independent test laboratory. BFTC, recently sold off to Exova, a proper fire test company, was an in-house lab, owned and operated by, and out of premises owned by Promat UK, with the same address, phone and fax number, in England. DuraBarrier is nothing other than an asymmetrical wall (which actually means it must be tested from both sides – it wasn’t), which is shown on the Wikimedia Commons Category “Asymmetrical fire barriers” (commons.wikimedia.org/wiki/Category:Asymmetrical_fire_barriers), made of a steel framework, without any fireproofing to keep the steel temperature from exceeding 1000 degrees Fahrenheit or 538 degrees Celsius heat rise above ambient at the beginning of the test (a requirement for structural steel in North American fire test standards), and then Durasteel panelling, (commons.wikimedia.org/wiki/Category:Durasteel), 3/8 inch or 9.5mm thick, made of low density and wood fibre re-enforced concrete, sandwiched in with perforated galvanised sheet metal – screwed into the steel frame with sheet metal screws. Identically to the Thermo-Lag Scandal (en.wikipedia.org/wiki/Gerald_W._Brown#Thermo-Lag_scandal), the manufacturer’s (Promat UK’s BFTC in-house lab) laboratory was used to qualify the product. As you can imagine, when the manufacturer tests his own products, it is possible that he gets great results. Also see nrc.gov/reading-rm/doc-collections/gen-comm/gen-letters/1992/gl92008.html. But it does not stop there. The test sample size was 8.9 square metres or 96 square feet – below the minimum required size, meaning the test was irrelevant on that basis alone. The reason for this smaller size is because the restraint frame that holds the test sample was narrowed in by what looks like pieces of precast concrete, thus resulting in the sample size below BOTH British AND North American Requirements. A40’s 8.9 square metre wall test sample size is solidly below the minimum size dictated by all 4 North American test standards (ASTM E119, CAN/ULC-S101, NFPA 251 and UL 263), as well as the British Standard BS476, from which most of the acceptance criteria was copied and pasted verbatim, whilst mentioning only ASTM E119. BS476 requires a minimum test sample size of 9 square metres, meaning the A40 test complies neither with ASTM E119 nor BS476. Each of the four North American standards require a minimum sample size of 100 square feet or 9.3 square metres. The A40 test falls short of this (meaning the whole test is bogus because of the sample size alone), but conceals the fact by not counting up the sample module sizes, which is also a requirement of the standards in terms of items required to be covered by test reports. The A40 test was done on one side only (despite the requirement in all North American test standards AND BS 476 to test both sides of asymmetrical wall test samples) because DSBI and BFTC (AKA Promat UK) claim that with the steel framework in the fire, they tested the most critical side, which is good enough – for them. That is a purposeful deception aided and abetted by Promat UK, who know better. The standards indicate that one must test two identical samples, one from each side. The results from both tests must be reported, which means, in practice, that whichever side gets the lowest fire resistance test result, that is the overall rating of the wall system. Test sponsor and manufacturer-owned test labs, do not get to pick which side is more dangerous and then save money (typically about US$20,000 per full size wall test in North American laboratories) by testing only one side whilst claiming to be in compliance with standards that say the opposite. By comparison, all drywall shaftwalls are asymmetrical and get tested on both sides. In practical use, one cannot know with certainty, which side the fire will come from. That is why the caution. It gets worse. DuraBarrier, meaning single sheets of Durasteel, fastened onto a steel frame that gets red-hot during a fire, meaning significantly lower strength than at ambient, are supposed to be suspended from concrete filled rectangular steel tubes, or HSS (Hollow Steel Section) columns. Such steel columns can work in fires, but they also exhibit fire behaviour whose effect upon DuraBarrier was never tested, and these columns are an integral part of the DuraBarrier wall system. Not including the full system that gets installed in the field contravenes paragraph 5 of ASTM E119, which states that test samples must match the field-installed configurations. So, the supports for DuraBarrier, that carry its load, were not tested together with DuraBarrier, contrary to paragraph 5 of ASTM E119. The steel frame of DuraBarrier gets red-hot in a fire. Authors of the A40 test report, including one J. Adams, same name as a Promat UK employee, listed as an application support manager, cherry-picks its own conditions of acceptance, taking the time/temperature curve to run the furnace with and the rest of the acceptance criteria verbatim from BS 476, a British standard, which has no validity whatsoever in North America, which is not mentioned in NFPA 850 either – a fact clearly known to DSBI, who claim expert status for themselves in matters of fire protection. One cannot comply with NFPA 850 recommendations by using a foreign fire test standard that it does not mention. Also, all single sheet Durasteel wall tests fail the temperature transmission requirements within approximately one quarter of an hour, from 10 to 21 minutes, in all furnace fire tests mentioned in table 1.2.2 in DSBI’s test index.
It gets worse yet.
The furnace is supposed to be calibrated and instrumented with furnace-interior thermocouples shielded inside of Inconel tubes. That’s called “shielded thermocouples”. Europeans use “fast response thermocouples”, with bare copper plates. The A40 test shows zero evidence that shielded thermocouples were used during the A40 test. Why does this matter? Because it can take 20 minutes or so for the thermocouples inside the Inconel tubes to accurately measure the furnace temperature, meaning that North American furnaces run hotter than European ones or anybody’s furnace run by means of fast response thermocouples early in the test, thus delivering a greater thermal shock at the beginning of the test. This fact was highlighted and quantified by the government of Canada: nparc.nrc-cnrc.gc.ca/eng/view/accepted/?id=f74c3459-d0dc-4349-a6d3-bdc1e80ae5f5. That means a slower, gentler thermal shock for test samples in furnaces equipped with fast response thermocouples – sort of like taking a grade 8 junior high school test in the third year of university – a wee bit easier. In the very similar Thermo-Lag Scandal, the United States Government had the manufacturer’s test furnace, which was used to qualify that same manufacturer’s product (Thermo-lag 330-1) disassembled and then re-assembled in Elmendorf, Texas, at Omega Point Laboratories (now Intertek), who conducted studies on behalf of the USNRC concerning fraudulently misrepresented electrical fireproofing (used to keep cables between control room and reactor inside of a nuclear power plant operational, in order to enable safe shutdown in the event of an emergency, involving an accidental fire). It’s a good idea to be able to switch off the reactor in a fire, same as it’s a good idea to keep burning and exploding transformers from having a domino effect… The studies provided with taxpayer funding by Omega Point Laboratories, now held at the Library of Congress, indicated that the Thermo-lag 330-1 fireproofing worked as intended when the furnace was equipped with fast response thermocouples – the furnace instrumentation was actually the “cheat” by Thermal Science Inc., the manufacturer of Thermo-lag 330-1. As soon as the same configuration of Thermo-lag fireproofed wiring was tested in a furnace equipped with shielded thermocouples, which is the requirement, it failed well before the claimed fire resistance rating period. This lacking performance was found out by nuclear whistle blower Gerald W. Brown (en.wikipedia.org/wiki/Gerald_W._Brown), who, at the time, was a principal in the Chemtrol company, which was a maker and installer of silicone foam through-penetration firestops (en.wikipedia.org/wiki/Firestop) in American nuclear power stations licensed by the USNRC. Gerald W. Brown had test reports to cover cable tray through-penetrations, firestopped with silicone foam, behind ceramic fibre form boards. What he lacked at the time, was evidence that when the wiring was fireproofed with Thermo-lag 330-1, there were no issues with his firestops and the direct contact between his firestop foam and the cable fireproofing. The fire test failed, at the location of the Thermo-lag 330-1 fireproofing, long before the expected time, causing Gerald W. Brown to report the matter to the USNRC, which set off a series of government run tests (funded by taxpayer funds), as well as litigation, followed by remedial action by USNRC license holders to protect their safe-shutdown trains (which ratepayers funded). So, the same test inconsistency that led to massive costs and litigation previously, which is public domain knowledge since the nineties, may have been in play in DSBI’s A40 test, as it offers no evidence whatsoever that the furnace was instrumented with shielded thermocouples, which is a North American requirement, without which, it is deceptive to use the defined term “fire resistance”, a fact well known to DSBI who claim expert status in the field. Also, the A40 test includes no hose stream, which is a water cannon test, at 3.1 bar or 45 PSI for several minutes, within 10 minutes of the end of the fire endurance test. Water must not project through the test sample to the unexposed side. The A40 test omitted this – one of many fallacies, that make it false advertising to use the defined term “fire resistance” in connection with DuraBarrier. Also, Promat UK’s conspiracy to commit fraud is apparent here. BFTC is not identified as being an in-house lab (with a stake in a positive outcome) in the test report. In fact, there is no mention of the conflict of interest in using a manufacturer’s in-house test as a means of demonstrating fitness for purpose – in the Colonies. Promat UK, indicatively, makes no mention of this A40 test in its own promotional literature – despite the otherwise impressive sounding (false advertising) 6 hours of fire-resistance, at a thickness of only 3/8” or 9.5mm. Also, BFTC, the Promat UK in-house test lab, did maintain UKAS accreditation. Again, indicatively, the A40 report states that this was an ad hoc test and, as such, outside of its accreditation scheme. Therefore, the accreditation is mentioned in order to highlight the quality of the in-house laboratory, but this test is not covered. It is entirely possible that this enabled Promat UK to conceal the A40 report from routine BFTC audit by UKAS, which may have resulted in notification to the Competition and Markets Authority (en.wikipedia.org/wiki/Competition_and_Markets_Authority) in London, once the effect of exporting under unfair auspices were understood. It is also not clear, whether the BFTC lab was accredited by UKAS to run ASTM E119 tests, which would have entailed checking for the use of shielded thermocouples, without which, the test has no validity for North America and represents an unfair trade practice whilst trading in or with North America. In the Thermo-Lag scandal, USNRC noted that when Thermal Science Inc (TSI) represented the ITL laboratory, which had done qualifying tests on Thermo-Lag electrical fireproofing, as an independent test laboratory, that this was a Severity 1 violation, which, in itself, was worth a civil fine of $100,000.00. BFTC was owned and operated by Promat UK, makers of Durasteel and providers of Durasteel to DSBI.
Test A1 through A21, in table 1.2.2 of DSBI test index 29-34, page 6, are all British BS476 fire tests with fast response furnace thermocouples, with the test sample Durasteel walls less than the North American minimum wall sample size of 100 square feet or 9.3 square metres. All failed the thermal transmission mandatory ASTM E119 requirement within 10-21 minutes. No hose stream was run. The earliest of these tests was in 1976, thus proving conclusively that DSBI, which began operations in 1990, knew, since its very inception, that a single sheet, uninsulated Durasteel wall does not meet minimum North American requirements. Also, any claim DSBI may represent to having, concerning proprietary intellectual property or copyright is disabled on account of the fact that the earliest tests of single sheet Durasteel walls resemble DuraBarrier. Using somewhat different steel profile configurations to make the frames to screw the Durasteel panels into, is no great scientific leap. Further, similar systems are also promoted by rival Invicta, another Promat UK distributor, who, just like DSBI, posts pictures of such single sheet barriers, fashioned into modules containing tube steel, have been in the public domain for some time. Also, sinisisolutions.com put the construction details of DuraBarrier online through photographs. DSBI has exhibited samples of DuraBarrier publicly at trade shows. DuraBarrier ceased being unique intellectual property in 1976, when the first test was run by Cape Durasteel Limited, whose test reports were disseminated worldwide through distribution networks and sales staff. As a result, there can be no serious claim by DSBI of having unique technology, intellectual property or scientific research and experimental development under the Income Tax Act of Canada. The A40 test is particularly deceptive in its use, with Promat UK as a co-conspirator in product misrepresentation, or unfair trade practice, through authoring the A40 test report, which does not explain the fiduciary ties between BFTC, Promat UK and DSBI in the test report, and cherry-picks its own pass-fail criteria, which is normally not necessary, as the standards have spelled out the conditions of acceptance, since it is used to claim 6 hours of fire resistance. 6 hours fire resistance would be impressive, if the product met the conditions of acceptance of ASTM E119, NFPA 251, CAN/ULC-S101 and/or UL263, which are all essentially identical. As a species, homo sapien does not currently possess the knowledge to meet the necessary conditions of acceptance at a thickness of 3/8” or 9.5mm. To believe otherwise, requires a solid lack of knowledge in the field of fire-resistance, where wall thicknesses of several inches are needed to provide sufficient strength and insulation to meet such conditions of acceptance. For example, DSBI’s V466 2-hour UL listed system is over 4 inches or 10 cm thick. DSBI’s V460 UL listed 4-hour wall is 6-3/4” or 17.1 cm thick – for 4 hours, but DuraBarrier, ineligible for UL listings, is only 3/8” or 9.5mm thick and is marketed for 6 hours of fire resistance. 4-1/2” for 2 hours, 6-3/4” for 4 hours, but only 3/8” for 6 hours?
So, looking at Table 1.2.2 in test index 34, in tests A1 through A40, not a single hose stream test had been run, or run successfully, meaning any and all claims of fire resistance within North America, are completely deceptive. Then we get to test A41, which DSBI uses here, again, deceptively, to “Frankenstein” a hose-stream test onto the other non-compliant fire tests. Again, this is a purposeful deception and clear violation of Canada’s Competition Act and 15 US Code Paragraph 45. It is false advertising. In the first place, you cannot cherry-pick things you like from different tests and then cobble a rating together. It does not work that way. Secondly, Test report A41, signed by (now retired) Underwriters Laboratories of Canada engineers Claude Travers and Abbas Gulam Nanji, was not only a failure, and thus ineligible for listings, but it also violated test protocols in multiple ways, and, UL Canada clearly indicates the fallacies right inside of the report and indicates that DSBI are not to mention UL or that test in connection “with this wall system” (DuraBarrier). Table 1.2.2 calls it a “DuraBarrier Hose Stream Test”, AND mentions UL of Canada, contrary to UL’s explicit instructions, and thus expects people to use its result, to graft the hose stream test resistance onto other tests, where no hose stream test was performed. A41 and A42 were part of a series of tests following a DuraBarrier installation rumoured to be located at USNRC licensee TVA Watts Bar nuclear power station, which, supposedly, enquired about a missing hose stream test up until that point, prior to the 2008 and 2009 UL Canada test series. The UL Canada test series culminates in a single page letter report by UL Canada, dated 29. April 2009, by Claude Travers and Abbas Nanji to DSBI’s former staffer, Mr. John Wu. The letter informs DSBI’s Mr. Wu, that a 3-hour fire resistance test had been performed on 30 October 2008, as part of project 08CA37087. Following a 3-hour fire test, DuraBarrier failed the hose stream test. As soon as you see this, you need to realise that DSBI’s claim of 6 hours of fire resistance, which must include hose stream resistance, is false advertising and NFPA 850 compliance is out the window. Standards permit a re-test of an identical test sample, and only exposing this sample to a 1-hour fire endurance test, followed by the hose stream test, using the water cannon. If, beginning within 10 minutes of the end of the fire, it passes the hose stream test without through-projection of water to the unexposed side, then the sample is compliant from a hose stream perspective – if there are no other test standard violations, of which there are several, as Claude Travers and Abbas Nanji pointed out under separate cover. One small problem: the report indicates that following the 1-hour fire endurance test of DuraBarrier on 08. April 2009, DuraBarrier FAILED the mandatory hose stream test, without which there can be no claims of fire resistance in North America or per NFPA 850 for transformer fire walls. Indicatively, this particular single UL Canada page report does NOT show up in Table 1.2.2 of DSBI test index 34. DSBI may claim violation of proprietary information, but, in fact, it proves its culpability in false advertising, and thus, the defrauding of DuraBarrier customers and ratepayers, whose financial damages of this fraud go beyond the invoiced amount DSBI received per sale of DuraBarrier (station shut-down, installation, sinisisolutions.com as a middle man, or the previous cut-out – CSSI, plus local vetting for seismic and wind by a locally licensed structural engineer). This is where we get back to test A41, which is completely rigged. Here are the fallacies in the A41 test, as reported by UL of Canada: The test sample size was too small, at 9.09 square metres or 97.85 square feet, well below the minimum of 9.3 square metres or 100 square feet. Right there, the whole test is irrelevant, on size alone – again. But it does not stop there. Thermal failure occurred within only 17 minutes of the start of the test. After that point in time, there is no point in continuing, especially whilst claiming compliance with NFPA 850, which recommends that test samples comply with all conditions of acceptance of ASTM E119 or UL 263, which are both identical with CAN/ULC-S101 and NFPA 251.